

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

WINTER-18 EXAMINATION

Subject Name:Computer GraphicsModel AnswerSubject Code:22318

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	Sub Q. N.	Answer	Marking Scheme
1		Attempt any FIVE of the following:	10 M
	а	Define:	2 M
		(i)Pixel	
		(ii)Frame Buffer	
	Ans	• Pixel	1 M each for
		Pixel or Pel is defined as "the smallest addressable screen element". OR	definition
		A pixel may be defined as the smallest size object or color spot that can be displayed and addressed on a monitor.	
		• Frame Buffer	
		The <i>frame buffer</i> is the video memory (RAM) that is used to hold or map the image displayed on the screen.	
		OR	
		A framebuffer (frame buffer , or sometimes framestore) is a portion of RAM containing a bitmap that drives a video display.	

	b	Give the characterist	ics of display adapte	or.		2 M		
,	Ans The characteristics of common display adapters are given in Table. The present-day display adapter supports all the modes of the preceding display adapters							
		Driver selected	Mode constant	Display mode				
		CGA	CGACO	320×200 , 4 colour, palette 0				
			CGAC1	320×200 , 4 colour, palette 1				
			CGAC2	320×200 , 4 colour, palette 2 320×200 , 4 colour, palette 3				
			CGSHI	640 × 200, 2 colour				
		EGA	EGALO	640 × 200, 16 colour				
			EGAHI	640 × 350, 16 colour				
		VGA	VGALO	640 × 200, 16 colour				
			VGAMED	640 × 350, 16 colour				
			VGAHI	640 × 480, 16 colour				
	с	Explain Raster Scan				2 M		
	Ans	 In Factor The screwhee hort As strapi retrained Rast scare 	 Explain Raster Scan In Raster scan, the electron beam from electron gun is swept horizontally across the phosphor one row at time from top to bottom. The electron beam sweeps back and forth from left to right across the screen. The beam is on, while it moves from left to right. The beam is off, when it moves back from right to left. This phenomenon is called the <i>horizontal retrace</i>. As soon as the beam reaches the bottom of the screen, it is turned off and is rapidly retraced back to the top to start again. This is called the <i>vertical retrace</i>. Raster scan displays maintain the steady image on the screen by repeating scanning of the same image. This process is known as <i>refreshing of screen</i>. Scan line 					
	d	State two line drawin	g algorithms.			2 M		
	Ans	Digital Differential A	nalyzer (DDA) Algo	orithm		1 M for each		
		Digital Differentia	ll Analyzer algorithm	n generates a line from differential equation	ons of line	Aigonuilli		

		and hence the name DDA.							
		Bresenham's Algorithm							
		The Bresenham algorithm is another line drawing algorithm which uses integer calculations							
		The Bresenham algorithm is another line drawing algorithm which uses integer calculations							
		for drawing line.							
	е	List types of Polygon			2 M				
	A	Delygon can be of two types			1 Maaab				
	Ans	Polygon can be of two types:-			1 M each				
		Convex polygon							
		Concave porygon							
	f	List various polygon filling algorithms			2 M				
	Anc	Various polygon filling algorithms are:			1 Meach				
	Alls	various porygon mining argonumis are.			Any two				
		Flood Fill Algorithm			5				
		Boundary Fill Algorithm							
		Boundary Fin Algorithm							
		• Scan Line Algorithm							
	-	Cive metric representation for 2D goaling			2.14				
	g	Give matrix representation for 2D scam			2 171				
	Ans	Let us assume that the original co-ordinate	s are (X, Y) , the scaling factors are (S_x, S_y)	$_{\rm Y}$), and	2 M for				
		the produced co-ordinates are (X', Y'). Thi	s can be mathematically represented as sh	lown	proper Matrix				
		below:	5 1		WIGUIX				
		X'-X .	$S_{\rm Y}$ and $V' = V \cdot S_{\rm Y}$						
		The applies factor $C = C$ apples the shi	S_X and $T = T \cdot S_Y$	The shore					
		The scaling factor S_X , S_Y scales the obj	form on holowy	The above					
		equations can also be represented in matrix	$[\mathbf{Y}]$ form as below:						
			$\begin{vmatrix} X \\ H \end{vmatrix} = \begin{vmatrix} X \\ H \end{vmatrix} = \begin{vmatrix} S_X & 0 \\ 0 & C \end{vmatrix}$						
			$ \begin{bmatrix} Y' \end{bmatrix} \begin{bmatrix} Y \end{bmatrix} \begin{bmatrix} 0 & S_y \end{bmatrix} $						
2		Attempt any THREE of the following:			12 M				
	•	Differentiate between Bandom Sean and	Dester Seen		4 5 4				
	d	Differentiate between Kandom Scan and	i Kaster Stan.		4 111				
	Ans	Random Scan Display	Raster Scan Display		Any four				
		In vector scan display the beam is	In raster scan display the beam is		points: 1				
		moved between the end points of the	moved all over the screen one scan at		mark each				
		graphics primitives.	a unit, nom top to bottom and then						
		Vector display flickers when the	In raster display, the refresh process						
		number of primitives in the buffer	is independent of the complexity of						
		becomes too large.	the image.						

	Scan conversion is not required.	Graphics primitives are specified in terms of their endpoints and must be scan converted into their corresponding pixels in the frame buffer. Because each primitive must be scan	
	required.	converted real time dynamics is far more computational and requires separate scan conversion hardware.	
	Vector display draws continuous and smooth lines.	Raster display can display mathematically smooth lines, polygons and boundaries of curves primitives only by approximating them with pixels on the raster grid.	
	Mathematical functions are used to draw an image.	Screen points/pixels are used to draw an image.	
	It does not user interlacing.	It uses interlacing.	
	Editing is easy.	Editing is difficult.	
	Cost is more	Cost is low	
	Vector display only draws lines and characters.	Raster display has ability to display areas filled with solid colors or patterns.	
	Resolution is good because this system produces smooth lines drawings because CRT beam directly follows the line path.	Resolution is poor because raster system in contrast produces zigzag lines that are plotted as discrete point sets.	
	Picture definition is stored as a set of line drawing instructions in a display file.	Picture definition is stored as a set of intensity values for all screen points, called pixels in a refresh buffer area.	
	They are more suited to line drawing application e.g. CRO and pen plotter.	They are more suited to geometric area drawing applications e.g. monitors, TV	
	It uses beam-penetration method.	It uses shadow-mask method	
b	Explain and write steps for DDA line dr	awing algorithm.	4 M
Ans	 This algorithm generate hence the name DDA. DDA algorithm is an in A DDA is hardware or an in 	es a line from differential equations of line and cremental scan conversion method. software used for linear interpolation of variables	Explanation 2M, Algorithm 2M
	over an interval between	n start and end point.	
	DDAs are used for raste	erization of lines, triangles and polygons.	
	DDA method is referred to the numerical differential e	d by this name because this method is very similar ntial equations. The DDA is a mechanical device equations by numerical methods	
	Algorithm:		
	Steps 1: Read the end point	ts of line $(x1,y1)$ and $(x2,y2)$.	

	Steps 2: $\Delta x = abs (x_2 - x_1) and$	
	$\Delta y = abs (y_2 - y_1)$	
	Step 3: if $\Delta x \ge \Delta y$ then	
	length = Δx	
	else	
	length = Δy	
	end if	
	Step 4: $\Delta x = (x_2 - x_1)/\text{length}$	
	Step 5: $\Delta y = (y_2 - y_1)/\text{length}$	
	Step 6: $x = x_1 + 0.5 * sign(\Delta x)$	
	$y = y_1 + 0.5 + sign(\Delta y)$	
	Step $7: 1 = 1$	
	while $(1 \leq \text{length})$	
	nlot (integer (x) integer (v))	
	$\mathbf{x} = \mathbf{x} + \mathbf{A}\mathbf{x}$	
	$\mathbf{x} = \mathbf{x} + \Delta \mathbf{x}$ $\mathbf{y} = \mathbf{y} + \Delta \mathbf{y}$	
	i = i + 1	
	}	
	Step 8: End	
с	List out basic transformation techniques. Explain scaling transformation with respect to	4 M
	2D.	
Ans	Basic transformations techniques are:	Listing 1M,
		Explanation
	• I ranslation	3M
	• Scaling	
	Sound	
	Rotation	
	Scaling Transformation	
	• Scaling means to change the size of object. This change can either	
	be positive or negative.	
	• To change the size of an object, scaling transformation is used. In	
	the scaling process you either expand or compress the dimensions of the	
	shinet	
	objeci.	
	• Scaling can be achieved by multiplying the original co-ordinates of	
	the object with the scaling factor to get the desired result.	
	• Let us assume that the original co-ordinates are (\mathbf{X}, \mathbf{V}) the scaling	
	= 1 for store one (S = S) and the are level of ordinates are (X X) TI	
	factors are (S_X, S_Y) , and the produced co-ordinates are (X', Y') . This can be	
	mathematically represented as shown below:	
	$X'=X \cdot S_X$ and $Y'=Y \cdot S_Y$	
	• The scaling factor S_x , S_y scales the object in X and Y direction	
1		

	respectively. The above equations can also be represented in matrix form as	
	below:	
	$\begin{bmatrix} \mathbf{X}' \\ \mathbf{Y}' \end{bmatrix} = \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} \begin{bmatrix} \mathbf{S}_{\mathbf{x}} & 0 \\ 0 & \mathbf{S}_{\mathbf{y}} \end{bmatrix}$	
	OR	
	$P'=P \cdot S$	
	Where, S is the scaling matrix.	
	, , , , , , , , , , , , , , , , , , ,	
	20-	
	15+ 15+	
		→
	(a) Before Scaling (b) After Scaling	
	• If we provide values less than 1 to the scaling factor S, then we can reduce	
	the size of the object. If we provide values greater than 1, then we can increase the size of the object	
	increase the size of the object.	
d	Explain differ types of Text clipping in brief.	4 M
Ans	Many techniques are used to provide text clipping in a computer graphics. It depends on the	Explanation
	methods used to generate characters and the requirements of a particular application. There	of 3 methods
	1) All or none string clipping	diagrams 4
	2) All or none character clipping	marks
	3) Text clipping	
	The following figure shows all or none string clipping –	
1	······································	

This clipping method is based on characters rather than the entire string. In this method if the string is entirely inside the clipping window, then we keep it. If it is partially outside the window, then you reject only the portion of string being

		outside. If the character is on the boundary of the clipping window, then we discard only that portion of character that is outside of the clipping window.	
3		Attempt any THREE of the following:	12 M
	а	Explain stroke method and Bitmap method with example.	4M
	Ans	 1)STROKE METHOD Stroke method is based on natural method of text written by human being. In this method graph is drawing in the form of line by line. Line drawing algorithm DDA follows this method for line drawing. This method uses small line segments to generate a character. The small series of line segments are drawn like a stroke of pen to form a character. We can build our own stroke method character generator by calls to the line drawing algorithm. Here it is necessary to decide which line segments are needed for each character and then drawing these segments using line drawing algorithm. 2)BITMAP METHOD Bitmap method is a called dot-matrix method as the name suggests this method use array of bits for generating a character. These dots are the points for array whose size is fixed. In bitmatrix method when the dots is stored in the form of array the value 1 in array represent the characters i.e. where the dots appear we represent that position with numerical value 1 and the value where dots are not present is represented by 0 in array. It is also called dot matrix because in this method characters are represented by an array of dots in the matrix form. It is a two dimensional array having columns and rows. A 5x7 array is commonly used to represent characters. However 7x9 and 9x13 arrays are 	Stroke Method 2 Marks; Bitmap Method 2 Marks
		also used. Higher resolution devices such as inkjet printer or laser printer may use character arrays that are over 100x100	
	b	Explain types of Parallel Projection with example.	4M
	Ans	 Orthographic projection – the projection direction is a normal one to the plane and it is categorized as Top projection Front projection Side projection 	Orthographi c projection 2 marks; Oblique projection 2 Marks

	<image/> To view To view To view Find view Front view • Oblique projection – the projection direction is not a normal one to the plane; it gives a better view and it is categorized as • Cavalier projection • Cabinet projection • Cabinet projection • Cabinet projection • Cabinet Projection • Cabinet Projection • Cabinet Projection	
C	Write down Cohen-Sutherland Line clipping algorithm.	4M
 Ans	Step 1: Scan end points for the line $P1(x1, y1)$ and $P2(x2, y2)$	Correct algorithm 4
	Step 2: Scan corners for the window as (Wx1, Wy1) and (Wx2, Wy2)	Marks
	Step 3: Assign the region codes for endpoints P1 and P2 by	
	Bit 1 - if $(x < Wx1)$	
	Bit 2 - if $(x < Wx2)$	
	Bit 3 - if $(x < Wy2)$	

	Bit 4 - if $(x < Wy1)$	
	Step 4: Check for visibility of line P1, P2	
	• If region codes for both end points are zero then the line is visible, draw it and jump to step 9.	
	• If region codes for end points are not zero and the logical and operation of them is also not zero then the line is invisible, reject it and jump to step 9.	
	• If region codes for end points does not satisfies the condition in 4(i) and 4(ii) then line is partly visible.	
	Step 5: Determine the intersecting edge of the clipping window by inspecting the region codes for endpoints.	
	 If region codes for both the end points are non-zero, find intersection points P1 and P2 with boundary edges of clipping window with respect to point P1 and P2. If region code for any one end point is non zero then find intersection point P1 or P2 with the boundary edge of the clipping window with respect to it. Step 6: Divide the line segments by considering intersection points. 	
	Step 7: Reject the line segment if any of the end point of it appear outside the window.	
	Step 8: Draw the remaining line.	
	Step 9: Exit	
d	Explain Koch curve with diagram.	4M
 d Ans	Explain Koch curve with diagram. Koch Curve: - In Koch curve, begin at a line segment. Divide it into third and replace the	4M Description
d Ans	Explain Koch curve with diagram.Koch Curve: - In Koch curve, begin at a line segment. Divide it into third and replace the center by the two adjacent sides of an equilateral triangle as shown below.	4M Description 3 Marks; Diagram 1 Mark
d Ans	Explain Koch curve with diagram. Koch Curve: - In Koch curve, begin at a line segment. Divide it into third and replace the center by the two adjacent sides of an equilateral triangle as shown below.	4M Description 3 Marks; Diagram 1 Mark
d Ans	Explain Koch curve with diagram. Koch Curve: - In Koch curve, begin at a line segment. Divide it into third and replace the center by the two adjacent sides of an equilateral triangle as shown below.	4M Description 3 Marks; Diagram 1 Mark
d Ans	Explain Koch curve with diagram. Koch Curve: - In Koch curve, begin at a line segment. Divide it into third and replace the center by the two adjacent sides of an equilateral triangle as shown below. (a) (b) (b) Fig 6.3 Replacement of Line Segment for Koch Curve	4M Description 3 Marks; Diagram 1 Mark
d Ans	Explain Koch curve with diagram. Koch Curve: - In Koch curve, begin at a line segment. Divide it into third and replace the center by the two adjacent sides of an equilateral triangle as shown below. (a) (b) (b) Fig 6.3 Replacement of Line Segment for Koch Curve This will give the curve which starts and ends at same place as the original segment but is	4M Description 3 Marks; Diagram 1 Mark
d Ans	Explain Koch curve with diagram. Koch Curve: - In Koch curve, begin at a line segment. Divide it into third and replace the center by the two adjacent sides of an equilateral triangle as shown below. (a) (b) Fig 6.3 Replacement of Line Segment for Koch Curve This will give the curve which starts and ends at same place as the original segment but is built of 4 equal length segments, with each 1/3rd of the original length. So the new curve	4M Description 3 Marks; Diagram 1 Mark
d Ans	Explain Koch curve with diagram. Koch Curve: - In Koch curve, begin at a line segment. Divide it into third and replace the center by the two adjacent sides of an equilateral triangle as shown below. (a) (b) Fig 6.3 Replacement of Line Segment for Koch Curve This will give the curve which starts and ends at same place as the original segment but is built of 4 equal length segments, with each 1/3rd of the original length. So the new curve has 4/3 the length of original segments. Repeat same process for each of the 4 segment	4M Description 3 Marks; Diagram 1 Mark
d	Explain Koch curve with diagram. Koch Curve: - In Koch curve, begin at a line segment. Divide it into third and replace the center by the two adjacent sides of an equilateral triangle as shown below. (a) (b) Fig 6.3 Replacement of Line Segment for Koch Curve This will give the curve which starts and ends at same place as the original segment but is built of 4 equal length segments, with each 1/3rd of the original length. So the new curve has 4/3 the length of original segments. Repeat same process for each of the 4 segment which will give curve more wiggles and its length become 16/9 times the original.	4M Description 3 Marks; Diagram 1 Mark
d	Explain Koch curve with diagram. Koch Curve: - In Koch curve, begin at a line segment. Divide it into third and replace the center by the two adjacent sides of an equilateral triangle as shown below. (a) (b) Fig 6.3 Replacement of Line Segment for Koch Curve This will give the curve which starts and ends at same place as the original segment but is built of 4 equal length segments, with each 1/3rd of the original length. So the new curve has 4/3 the length of original segments. Repeat same process for each of the 4 segment which will give curve more wiggles and its length become 16/9 times the original. Suppose repeating the replacements indefinitely, since each repetition increases the length	4M Description 3 Marks; Diagram 1 Mark

		wig	ggles.								
4		Attempt any THREE of the following:								12 M	
	а	Compare Bitmap Graphics and Vector based graphics.									4 M
	Ans		Bitm	nap Gra	aphics		Vector Based	Grap	phic		Any 4 Points of
			It is pixel ba	sed im	age		It is Mathematical b	ased	image		comparison; 1 Mark each
			Images are r	esoluti	on depen	dent.	Images are formula dependent.	base	d /		
			These image scalable	s are n	ot easily		Easily scalable with formula.	the l	nelp of		
			Poor quality to Vecto	of ima or base	ige as opp d Graphic	oose cs.	Better image quality Bitmap Graphic	as c s.	ompare to		
			Size of imag	e is hi	gh.		Size of image is low	.			
	b	Consid	er line from	(4, 4)	to (12 9).	Use I	Bresenham's algorith	nm to	o rasterize	this line.	4 M
	Ans		x1 =	= 4 y1	= 4 &	$x^2 = 1$	2 y2 = 9				Any Suitable
		Calcu	lation		Result				-		method can be consider
		dx = a	bs(x1 - x2)		8 = abs(4)	4 - 12))		-		Correct
		dy = a	bs(y1 - y2)		5 = abs(4)	4 - 9)			-		steps and result: 4
		p = 2 * (dy - dx) -			-6 = 2 *	(5 - 8))				Marks
		ELSE			$\mathbf{x} = \mathbf{x}1$	y = y1	end = x2				
					$x = 4 \mid y$	= 4 e	end = 12				
			1	I		1					
		STEP	while(x < end)	x =	= x + 1	if(p	< 0) { p = p + 2 * dy } else{ p = p + 2 * (dy - dx) }	οι	JTPUT		
		1	5 < 12	5 = 4	+ 1	IF 4	= -6 + 2 * 5	x =	5 y = 4		
		2	6 < 12	6 = 5	+ 1	ELS	E - 2 = 4 + 2 * (5 - 8)	x =	6 y = 5		
		3	7 < 12	7 = 6	+ 1	IF 8	= -2 + 2 * 5	x =	7 y = 5		

 Г							
	4	8 < 12	8 = 7 + 1	ELSE $2 = 8 + 2 * (5 - 8)$	$\mathbf{x} = 8 \mid \mathbf{y} = 6$		
	5	9 < 12	9 = 8 + 1	ELSE $-4 = 2 + 2 * (5 - 8)$	x = 9 y = 7		
	6	10 < 12	10 = 9 + 1	IF $6 = -4 + 2 * 5$	x = 10 y = 7		
	7	11 < 12	11 = 10 + 1	ELSE $0 = 6 + 2 * (5 - 8)$	x = 11 y = 8		
	8	12 < 12	12 = 11 + 1	ELSE -6 = 0 + 2 * (5 - 8)	x = 12 y = 9		
с	Use Co (70, 20	bhen-Suther) — P4 (1	land algorithm 00, 10) agains	n to clip two lines PI (40, st a window A (50, 10),	15) P2 (75. B (80, 10). C	45) and P3 (80, 40) &	4 M
 	D(5)	50,40)					•
Ans	Solution Line 1	on : : P1 (40, 1	.5) - P2 (75, 4	5) Wxi = 50 Wy2 = 40 V	Vx2 = 80 Wy2	= 10	Any suitable method can be consider
	Point	Ende	ode ANDi	ng			Computatio
	P1 (0001	0000	(Partially visible)			n for Line
	P2	0000	0000	(Tartiany Visible)			1: 2 Marks; Computatio n for Line 2
							: 2 Marks
	$y_1 = m$	$(x_{L} - x_{l}) + \frac{1}{2}$	$y = \frac{6}{7}(50-40) +$	-15 m =	45-15 75-40		
	= 23.	57					
	$X_1 = \frac{1}{m}$	$(y_T - y) +$	$x = \frac{7}{6}(40-50)$	+40 = 69.16			
	$y_2 = m$	$(X_R - X) +$	$y = \frac{6}{7}(80-40) +$	-15 = 49.28			
	$x_2 = \frac{1}{m}$	$(y_B - y) +$	$x = \frac{7}{6}(10-15)$	+40 = 34.16			
	Hence	:					
			P ₁ (40,	$\begin{array}{c} (50, 40) \\ y_{1} \\ (50, 10) \\ (50, 10) \\ (80, 10) \end{array} \begin{array}{c} P_{2}(75, 45) \\ (80, 40) \\ (80, 10) \\ (80, 10) \end{array}$			

Line 2 : P3 (70,20) – P4 (100,10) Wxi = 50 Wy2 = 40 Wx2 = 80 Wy2 = 10
Point Endcode ANDing
P3 0000 0000 (Partially visible)
P4 0010
Slope m^{*} =
$$\frac{10-20}{100-70} = \frac{-10}{30} = \frac{-1}{3}$$

y^{*}₁ = m(x₁ - x) + y = $\frac{-1}{3}(50-70)+20 = 26.66$
x^{*}₁ = $\frac{1}{m}(y_T - y) + x = -3$ (40-20)+70 = 10
y^{*}₂ = m(x_R - x) + y = $\frac{-1}{3}(80-70)+20 = 16.66$
x^{*}₂ = $\frac{1}{m}(y_B - y) + x = -3$ (10-20)+70 = 100
Hence:
(90,40)
(50,10)
(50,10)
(50,10)
(50,10)
(50,10)
(50,10)
(50,10)
(50,10)
(50,10)
(50,10)
(50,10)
(50,10)
(7,10)
(7,10)
Ans
 $\frac{\cos 0}{-\sin 00}$
 $\frac{\cos 0}{-\sin 00}$
 $\frac{\cos 0}{-\sin 0}$
 $\frac{1}{\sqrt{2}}$
 $\frac{1}{\sqrt{2}}$

	$\begin{bmatrix} A' \\ B' \\ C' \\ D' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 \\ -\frac{1}{\sqrt{2}} + 1 & -\frac{1}{\sqrt{2}} & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 1 \\ -\frac{1}{\sqrt{2}} + 1 & -\frac{1}{\sqrt{2}} & 1 \\ 1-\sqrt{2} & 0 & 1 \\ 1-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 1 \end{bmatrix}$	
e	Explain curve generation using Interpolation technique.	4 M
Ans	Specify a spline curve by giving a set of coordinate positions, called control points, which indicates the general shape of the curve These, control points are then fitted with piecewise continuous parametric polynomial functions in one of two ways. When polynomial sections are fitted so that the curve passes through each control point, the resulting curve is said to interpolate the set of control points. On the other hand, when the polynomials are fitted to the general control-point path without necessarily passing through any control point, the resulting curve is said to approximate the set of control points interpolation curves are commonly used to digitize drawings or to specify animation paths. Approximation curves are primarily used as design tools to structure object surfaces an approximation spline surface credited for a design application. Straight lines connect the control-point positions above the surface.	Description 2 Marks; Example/Di agram 2 Marks
	$-1 - \frac{1}{10} - \frac{1}{10} + \frac{1}$	

5		Attempt any two of the following:	12 M
	а	Rotate a triangle defined by A(0,0), B(6,0), & C(3,3) by 90 ⁰ about origin in anti-clock wise direction	6 M
	Ans	The new position of point A (0, 0) will become A' (0,0) The new position of point B (6,0) will become B' (0, 6) The new position of point C (3, 3) will become C' (-3, 3) $\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} x \\ y \\ x \end{bmatrix} \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$	Matrix 2 Marks Correct answer 4 marks
		$\begin{bmatrix} 0 & 0 & 1 \\ 6 & 0 & 1 \\ 3 & 3 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 & 1 \\ 0 & 6 & 1 \\ -3 & 3 & 1 \end{bmatrix}$	
		6 - 8' 2' = 3 2' = 3 2' = 3 -6 - 5 - 4 - 3 - 2 - 1 A' = 2 - 3 - 4 A' = 2 - 3 - 4 A' = 2 - 3 - 4 B	
	b	Explain boundary fill algorithm with pseudo code. Also mention its limitations if any.	6 M
	Ans	<pre>Procedure : boundary_fill (x, y, f_colour, b_colour) { if (getpixel (x,y) ! = b_colour && getpixel (x, y) ! = f_colour)</pre>	4m algorithm, 2m for limitations
		• There is a problem with this technique. Consider the case following, where we tried to fill the	

	entire region. Here, the image is filled only partially. In such cases, 4-connected pixels technique cannot be used.	
	Won't fill this area	
	$\bullet \bullet \bullet \bullet$	
C	obtain the curve parameters for drawing a smooth Bezier curve for the following points A(0,10), B(10,50), C(70,40) &D(70,-20)	6 M

Ans		Any correct
	A(0,10), B(10,50), C(70,40), D(70,-20)	be consider.
	$P(u) = (1 - u^{3})P_{1} + 3u(1 - u^{2})P_{2} + 3u^{2}(1 - u)P_{3} + u^{3}P_{4}$	Calculation 3 Marks
	$4 = 0, \pm 1, \pm 2, \pm 4$	Diagram
	$P(0) = P_{1}=(0,10)$	SIVIDIKS
	$P(\frac{1}{4}) = (1 - \frac{1}{4})^{3} P_{1} + 3\frac{1}{4}(1 - \frac{1}{4})^{2} + 3(\frac{1}{4})^{2}(1 - \frac{1}{4})P_{3} + (\frac{1}{4})^{3} P_{4}$	
	$=\frac{27}{64}(0,10)+\frac{27}{64}(10,50)+\frac{9}{64}(70,40)+\frac{1}{64}(70,-20)$	
	$= \left(\begin{array}{c} 27 \\ 64 \end{array} \times 0 + \begin{array}{c} 27 \\ 64 \end{array} \times 10 + \begin{array}{c} 9 \\ 64 \end{array} \times 70 + \begin{array}{c} 1 \\ 64 \end{array} \times 70 + \begin{array}{c} 27 \\ 64 \end{array} \times 10 + \begin{array}{c} 27 \\ 64 \end{array} \times 10 + \begin{array}{c} 37 \\ 64 \end{array} \times 10 + \begin{array}{c} 1 \\ 84 \end{array} \times 10 + \begin{array}{c} 1 \\ \times 10 + 0 \\ \times 10 + \begin{array}{c} 1 \\ \times 10 + 0 \\ \times 10 $	
	$\frac{27}{64} \times 50 + \frac{9}{64} \times 40 + \frac{1}{64} \times -20]$	
	$= \left[0 + \frac{270}{64} + \frac{630}{64} + \frac{70}{64}, \frac{270}{64} + \frac{135}{64} + \frac{360}{64} - \frac{20}{64}\right]$	
	$= \left[\frac{970}{64}, \frac{745}{64} \right] = \left(\frac{15.15}{11.64} \right)$	
	$P(\frac{1}{2}) = (1 - \frac{1}{2})^{3} P_{1} + 3\frac{1}{2}(1 - \frac{1}{2})^{2} P_{2} + 3(\frac{1}{2})^{2}(1 - \frac{1}{2})P_{3} + (\frac{1}{2})^{3} P_{4}$	
	$= \left(\frac{1}{8}\right)(0,10) + \frac{3}{8}(10,50) + \frac{3}{8}(70,40) + \frac{1}{8}(70,-20)$	
	= (= + + + = + + + + + + + + + + + + +	
	= ×10+===×50+===×40+==×40)	
	$= \left(\frac{30}{8} + \frac{210}{8} + \frac{70}{8}, \frac{10}{8} + \frac{150}{8} + \frac{120}{8} + \frac{-20}{8}\right)$	
	$= \left(\frac{310}{8}, \frac{260}{8}\right) = \left(\frac{38.7}{32.5}\right)$	

 $P\left(\frac{3}{4}\right) = \left(1 - \frac{3}{4}\right)^{3} P_{1} + 3 \frac{3}{4}\left(1 - \frac{3}{4}\right)^{2} P_{2} + 3\left(\frac{3}{4}\right)^{2} \left(1 - \frac{3}{4}\right) P_{3} + \left(\frac{3}{4}\right)^{3} P_{4}$ $=\frac{1}{64}(0,10)+\frac{9}{64}(10,50)+\frac{27}{64}(70,40)+\frac{27}{64}(70,-20)$ $= \left(\frac{1}{64} \times 0 + \frac{9}{64} \times 10 + \frac{27}{64} \times 70 + \frac{27}{64} \times 70\right)$ $\frac{1}{64} \times 10 + \frac{9}{64} \times 50 + \frac{27}{64} \times 40 + \frac{27}{64} \times -20 \right)$ $= \left(\frac{90}{64} + \frac{1890}{64} + \frac{1890}{64}\right) \frac{10}{64} + \frac{450}{64} + \frac{1080}{64} - \frac{540}{64}\right)$ - (60.46, 15.62) P(1) = (70, -20)

OR

ITERATION 1:

Mid of AB = AB'

AB' = [(Ax + Bx)/2, (Ay + By)/2)]= [(0+10)/2, (10+50)/2]= [(10)/2, (60)/2]= (5, 30)

Mid of BC = BC'

BC' =
$$[(Bx + Cx)/2, (By + Cy)/2)]$$

$$= [(10+70)/2, (50+40)/2]$$

Mid of CD = CD'

$$CD' = [(Cx + Dx)/2, (Cy + Dy)/2)]$$

$$= [(70+70)/2, (40+(-20))/2]$$

=	[(140)/2, (20)/2]	
=	(70, 10)	
ITERATIO	DN 2:	
Mid of AB	C = ABC'	
ABC' =	[(ABx + BCx)/2, (ABy + BCy)/2)]	
=	[(5+40)/2, (30+45)/2]	
=	[(45)/2, (75)/2]	
=	(22.5, 37.5)	
Mid of BCI	D = BCD'	
BCD' =	[(BCx + CDx)/2, (BCy + CDy)/2)]	
=	[(40+70)/2, (45+10)/2]	
=	[(110)/2, (55)/2]	
=	(55, 27.5)	
ITERATIO	DN 3:	
Mid of AB	CD = ABCD'	
ABCD'	= [(ABCx + BCDx)/2, (ABCy + BCDy)/2)]	
	= [(22.5+55)/2, (37.5+27.5)/2]	
	= [(77.5)/2, (65)/2]	

		7	
		5° B(10,5°) BC	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		10 00	
		10 20 30 30 40 50 60 70 80 90	
		$= \frac{2}{2}$	
		*	
		Scanned by CamScanner	
6		Attempt any two of the following:	12 M
	а	Write matrices in homogeneous co-ordinates system for 3D scaling transformation.	6M
	Ans	3D transformation matrix for scaling is as follows:	Correct
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Marks
		$\mathbf{S} = \begin{bmatrix} 0 & 0 & \mathbf{S}_z & 0 \end{bmatrix}$	

 T		
	It specifies three co-ordinates with their own scaling factors. If scale factors,	
	$S_x = S_y = S_z = S > 1$ then the scaling is called as	
	magnification.	
	$S_x = S_y = S_z = S < 1$ then the scaling is called as	
	reduction.	
	Therefore, point after scaling with respect to origin can be calculated as,	
	$\therefore P=P \cdot S$	
b	Write down Cyrus-Beck line clipping algorithm.	6M
Ans	Ster 1. Deed end activity of line D and D	Correct
	Step 1: Read end points of line P_1 and P_2 .	algorithm 6
	Step 2: Read vertex coordinates of clipping window.	marks
	Step 3: Calculate $D = P_2 - P_1$.	marks
	Step 4: Assign boundary point b with particular edge.	
	Step 5: Find inner normal vector for corresponding edge.	
	Step 6: Calculate D.n and $W = P_1 - b$	
	Step 7: If D.n > 0	
	$t_{\rm L} = -(W.n)/(D.n)$	
	else	
	$t_{\rm U} = -(W.n)/(D.n)$	
	end if	
	Step 8: Repeat steps 4 through 7 for each edge of clipping window.	
	Step 9: Find maximum lower limit and minimum upper limit.	
	Step 10: If maximum lower limit and minimum upper limit do not satisfy condition $0 \le t \le 1$ then ignore line	
	Step 11: Calculate intersection points by substituting values of maximum lower	
	limit and minimum upper limit in parametric equation of line P_1P_2	
	Step 12: Draw line segment $P(t_1)$ to $P(t_2)$	
	Step 12: Stat: the segment (1) to 1 (1).	
с	Derive the expression for decision parameter used in Bresenhaum's circle drawing algorithm.	6M

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

SUMMER – 19 EXAMINATION

Subject Name: Computer Graphics

Model Answer

Subject Code: 22318

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q .	Sub	Answer	Marking
No.	Q .		Scheme
	N.		
1		Attempt any FIVE of the following	10 M
	a	Define aspect ratio. Give one example of an aspect ratio	2 M
	Ans	Aspect ratio: It is the ratio of the number of vertical points to the number of	Definition-
		horizontal points necessary to produce equal length lines in both directions on the	1M
		screen.	Example-
		or	1M
		In computer graphics, the relative horizontal and vertical sizes. For example, if a	
		graphic has an aspect ratio of 2:1, it means that the width is twice as large as the	
		height.	
		or	
		Aspect ratio is the ratio between width of an image and the height of an image.	
		Example: The term is also used to describe the dimensions of a display resolution.	
		For example, a resolution of 800x600, 1027x768, 1600x1200 has an aspect ratio	
		of 4:3.	
		Resolution 1280x1024 has an aspect ratio 5:4	
		Resolution 2160x1440, 2560x1700 has an aspect ratio 3:2	
	b	List any four applications of computer graphics.	2 M

	Ans	Computer Entertainment (film,	Listing of
		Medical Applications	four
		CAD/CADD (architecture, mechanical	applications-
		Cartography.	2 M
		Computer Art	
		Desktop Publishing Applications	
		Computer	
		Simulation	
		(flight,driving) and virtual reality	
		Presentation	
		Interface (GUI) Graphics	
		• DIP (Desktop Publishing)	
		• Graphical User Interface (GUI)	
		Computer-Alded Learning (Cal)	
		• Computer-Alded Learning (Cal)	
		• Animations	
		• Computer Art	
		• Entertainment	
		• Education and training	
		Image processing	
		Medical Applications	
		 Presentation and Business Graphics 	
		Simulation and Virtual Reality	
	c	Define virtual reality. List any two advantages of virtual reality.	2 M
	Ans	Virtual reality (VR) means experiencing things through our computers that don't	Definition-
		really exist.	1M
		OR	Any two
		Virtual Reality (VR) is the use of computer technology to create a simulated	Advantages-
		environment. Instead of viewing a screen in front of them, users are immersed and	1 M
		able to interact with 3D worlds.	
		A dvantagas.	
		• Virtual reality creates a realistic world	
		• Through Virtual Papility user can experiment with an artificial	
		• Infough vintual Reality user can experiment with an artificial	
		• Virtual Deality make the education more easily and comfort	
		 Vintual Keanty make the education more easily and connon. It enables user to explore places. 	
		 It chapters user to explore places. Wintual Deality has made watching many arisyship than reading. 	
		• Virtual Reality used in video games, angineering, antertoinment, advection	
		design films media medicine and many more	
	Ь	List any two line drawing algorithms. Also, list two movits of any line	2 М
	u	drawing algorithm	<u><u></u> 1V1</u>
	Ans	Line drawing algorithms:	Listing-1 M
I			

	Digital Differential Analyzer (DDA) algorithm	Two merits-
	Bresenham's algorithm	I M
	Merits of DDA algorithms:	
	• It is the simplest algorithm and it does not require special skills for implementation.	
	 It is a faster method for calculating pixel positions than the direct use of equation y = mx + b. It eliminates the multiplication in the equation by making use of raster characteristics, so that appropriate increments are applied in the x or v direction to find the pixel positions along the line path Electing point Addition is still needed 	
	• Floating point Addition is still needed.	
	Merits of Bresenham's Algorithm:	
	Bresenhams algorithm is faster than DDA algorithm	
	• Bresenhams algorithm is more efficient and much accurate than DDA	
	 Bresenham's line algorithm is a highly efficient incremental method over DDA. 	
	 Bresenhams algorithm can draw circles and curves with much more accuracy than DDA algorithm 	
	It produces mathematically accurate results using only integer addition,	
	subtraction, and multiplication by 2, which can be accomplished by a simple	
 	arithmetic shift operation.	
 e	Define convex and concave polygons.	2 M
Ans	polygon then all the points on the line segment joining these two points fall within	Each I M
	the polygon itself.	
	Concave Polygon: It is a polygon in which if you take any two positions of polygon then all the points on the line segment joining these two points does not fall entirely within the polygon.	
f	What is homogeneous co-ordinate? Why is it required?	2 M
Ans	Homogeneous coordinates are another way to represent points to simplify the way	Definition-1

		in which we express affine transformation	ns	М				
		Normally book-keeping would become tedious when affine transformations of the						
		Normany, book-keeping would become t \rightarrow	willy					
		form $A\overline{p}$ + t are composed. With homogeneous coordinates, affine						
		transformations become matrices, and co	omposition of transformations is as simple	IVI				
		as matrix multiplication						
		With homogeneous coordinates, a point	\vec{p} is augmented with a 1, to form $\vec{p} = \vec{p} $					
		All points (a, \overline{p}, a) represent the series p_{α}	rt = for real c < 0					
		An points $(\alpha p, \alpha)$ represent the same point	In p for real $\alpha \neq 0$.					
		OB						
		UK						
		We have to use 3×3 transformation mat	rix instead of 2×2 transformation matrix.					
		To convert a 2×2 matrix to 3×3 matrix, w	ve have to add an extra dummy coordinate					
		W. In this way, we can represent the pe	oint by 3 numbers instead of 2 numbers,					
		which is called Homogenous Coordinate	system.					
		 Homogeneous coordinates are u 	sed extensively in computer vision and					
		graphics because they allow c	ommon operations such as translation,					
		rotation, scaling and perspective	projection to be implemented as matrix					
		operations						
		3D graphics hardware can be specialized	to perform matrix multiplications on 4x4					
		matrices.						
	g	Write the transformation matrix for y-shear.						
	Ans	The Y-Shear can be represented in matrix	x from as:	For matrix-2				
		F 1 0 0 1		М				
		\mathbf{V}_{1} $\mathbf{e}\mathbf{b}\mathbf{u}$ 1 0						
		I_{sh} $\begin{bmatrix} shy & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$						
		$X' = X + Sh_X \cdot Y$						
		$Y^{*} = Y$						
2		Attempt any TUDEE of the following		12 M				
4	9	Compare vector scan display and rast	er scan display (write any 4 noints)	12 M 4M				
	a Ans	Rostor	Vector	Any four				
	1115	Raster graphics are composed of	Vector graphics are composed	point-4 M				
		nivels	of paths	Point Litt				
		Plactor graphics are resolution	Vactor graphics are resolution					
		Raster graphics are resolution	indexendent					
		More expensive						
		Creating in it	Less expensive.					
		Graphics primitives are	Scan conversion is not required					
		specified in terms of their						
		endpoints and must be scan						
1		converted into their						

	correspondingpointsintheframebuffer.Itrequiredseparatescanconversionhardware.Rasterdisplayhasabilitytodisplayareasfilledwithsolidcolorsorpatterns.ItusesinterlacingThisdisplayshavelowerresolutionororor	Scan conversion hardware is not required.Vector display only draws lines and charactersIt does not used interlacing This displays have higher resolution	
	 They occupies more space which depends on image quality. File extensions are: .bmp, .gif, .jpg, .tif 	File extensions are: .pdf, .ai, .svg, .eps, .dxf	
		4	
b	Rephrase the Bresenham's algorithm algorithm required to plot the same.	to plot 1/8 th of the circle and write the	4M
Ans	algorithm required to plot the same.The key feature of circle that it is highl circle we will divide it in 8-parts each of use Bresenham's Circle Algorithm for of the first octant of 45 degrees. It assumes 	y symmetric. So, for whole 360 degree of ctant of 45 degree. In order to that we will ealculation of the locations of the pixels in each of the so that the circle is centered on the origin. We draw a pixel in each of the 8 octants of y -axis y -axis y -axis $(x, -y)$ $(x, -y)$ $(x, -y)$ $(y, -x)$ $(x, -y)$ $(x, -y)$ $(y, -x)$ $(x, -y)$ $(y, -x)$ $(x, -y)$ $(x, -y)$ $(y, -x)$ $(x, -y)$ $(x, -y)$ $(y, -x)$ $(x, -y)$ $(y, -x)$ $(x, -y)$ $(y, -x)$ $(x, -y)$ $(x, -y)$ $(x, -y)$ $(x, -y)$ $(y, -x)$ $(x, -y)$ $(x,$	Rephrase-2 M Algorithm-2 M
	{ Plot (x,y) If(d<0) th	en	

	1	
	d - d + 4x + 6	
	$\mathbf{u} = \mathbf{u} + 4\mathbf{x} + 0$	
	}	
	Else	
	{	
	d = d + 4(x-y) + 10	
	y=y-1	
	}	
	X=x-1	
	}	
	While(x <v)< th=""><th></th></v)<>	
	Step 5: stop	
	Plotting 8 points each point in one octant	
	Call Putpixel $(\mathbf{Y} + \mathbf{h}, \mathbf{Y} + \mathbf{k})$	
	Call Putpixel $(X + h, Y + k)$.	
	Call Putplixel $(-X + II, I + K)$.	
	Call Putpixel $(X + h, -Y + k)$.	
	Call Putpixel $(-X + h, -Y + k)$.	
	Call Putpixel $(Y + h, X + k)$.	
	Call Putpixel $(-Y + h, X + k)$.	
	Call Putpixel $(Y + h, -X - k)$.	
	Call Putpixel $(-Y + h, -X + k)$.	
С	Translate the polygon with co-ordinates A (3, 6), B (8, 11), & C (11, 3) by 2	4M for
	units in X direction and 3 units in Y direction.	proper
		solution
Ans	X ² =x+tx	
	Y'=y+ty	
	tx=2	
	ty=3	
	for point $\Lambda(3.6)$	
	$x^{2}=3+2=5$	
	$x^{2}=6+3=9$	
	for point $B(8,11)$	
	x'=8+2=10	
	y'=11+3=14	
	for point C(11,3)	
	x'=11+2=13	
	y'=3+3=6	
	$A^{2} - (x^{2} + x^{2}) - (5 - 0)$	
1	A - (X, y) - (J, y)	

		B'=(x',y')=(10,14) C'=(x',y')=(13,6)	
		y B(8,11) A(2,e) B(8,11) A(5,3) e(11,2) C(12,6) C(13,6)	
	d	Write the midpoint subdivision algorithm for line clipping.	4M
	Ans	Step 1: Scan two end points for the line $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$.	Algorithm-4
		Step 2: Scan corners for the window as $(\omega x_1, \omega y_1)$ and $(\omega x_2, \omega y_2)$.	М
		Step 3: Assign the region codes for endpoints P_1 and P_2 by initializing code with 0000.	
		Bit 1 - if $(x < \omega x_1)$	
		Bit 2 - if $(x > \omega x_2)$	
		Bit 3 - if $(y < \omega y_2)$	
		Bit 4 - if $(y > \omega y_1)$	
		Step 4: Check for visibility of line P_1, P_2 .	
		• If region codes for both end points are zero then the line is visible, draw it and jump to step 6	
		 If region codes for end points are not zero and the logical Anding operation 	
		of them is also not zero then the line is invisible, reject it and jump to step	
		6.	
		• If region codes for end points does not satisfies the condition in 4 (i) and 4	
		(11) then line is partly visible. Step5: Find midpoint of line and divide it into two equal line segments and repeat	
		steps 3 through 5 for both subdivided line segments until you get completely	
		visible and completely invisible line segments.	
		Step 6: Exit.	
			10.55
3	-	Attempt any THREE of the following	12 M
	a	diagram.	4 IVI
	Ans	Character Generator Methods:	Listing-1 M
		1) Stroke Method	and any one method 3 M
			memou-3 101
		2) Bitmap Method	

2)BITMAP METHOD

3) Starburst Method

- Bitmap method is a called dot-matrix method as the name suggests this method use array of bits for generating a character. These dots are the points for array whose size is fixed.
- In bit matrix method when the dots is stored in the form of array the value 1 in array represent the characters i.e. where the dots appear we represent that position with numerical value 1 and the value where dots are not present is represented by 0 in array.
- It is also called dot matrix because in this method characters are represented by an array of dots in the matrix form. It is a two dimensional array having columns and rows.

A 5x7 array is commonly used to represent characters. However 7x9 and 9x13 arrays are also used. Higher resolution devices such as inkjet printer or laser printer may use character arrays that are over 100x100.

	$ \begin{array}{c} \begin{array}{c} & & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	
b	Obtain a transformation matrix for rotating an object about a specified pivot point.	4 M
 Ans	To do rotation of an object about any selected arbitrary point $P1(x1,y1)$, following sequence of operations shall be performed.	Proper Explanation
	1. Translate: Translate an object so that arbitrary point P1 is moved to coordinate origin.	4 M
	2. Rotate: Rotate object about origin.	
	3. Translate: Translate object so that arbitrary point P1 is moved back to the its original position.	
	Note: Here to do one operation we are doing the sequence of three operations. So it is called as composite transformation or concatenation.	
	Rotate about point P1(x1,y1).	
	1) Translate P1 to origin.	
	2) Rotate	
	3) Translate back to P1.	
	Equation for this composite transformation matrix form is as follows:	
	$P' = T (x_1, y_1) \cdot R (\theta) \cdot T (-x_1, -y_1)$ $P' = \begin{bmatrix} 1 & 0 & x_1 \\ 0 & 1 & y_1 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -x_1 \\ 0 & 1 & -y_1 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$	
	Here $(x1,y1)$ are coordinates of point P1 and hence are translation factors tx and ty; we want to move P1 to origin , x1 and y1 are x and y distances to P1and hence it is translation factor.	

d	Given the vertices of Bezier Polygon as $P_0(1, 1)$, $P_1(2,3)$, $P_2(4,3)$, $P_3(3,1)$, determine five points on Bezier Curve.	4 M
	Step 7: Stop.	
	Step 6: Repeat the steps 4 and 5 for remaining edges of clipping window. Each time resultant list of vertices is successively passed to process next edge of clipping window.	
	Step 5: Save the resulting intersections and vertices in the new list of vertices according to four possible relationships between the edge and the clipping boundary.	
	Step 4: Compare vertices of each of polygon, individually with the clipping plane.	
	Step 3: Consider the left edge of window.	
	Step 2: Read co-ordinates of the clipping window.	
	Step 1: Read co-ordinates of all vertices of the polygon.	
	Algorithm for Sutherland-Hodgeman Polygon Clipping:	
	(ii) $I_Y = y_{min}$	
	(i) $I_x = x_1 + (y_{min} - y_1) / slope$	
	(11) $I_Y = y_{max}$ 4 Finally the intersection of the edge with the bottom side of the window is:	
	(i) $I_X = x_1 + (y_{max} - y_1) / slope$	
	3. The intersection of the polygon's edge with the top side of the window is:	
	(i) $I_X - x_{max}$ (ii) $I_Y = slope^*(x_{max} - x_1) + y_1$, where the slope = $(y_2 - y_1)/(x_2 - x_1)$	
	 2. The location of the intersection of the edge with the right side of the window is: (i) L = r 	
	(ii) $I_Y = slope^*(x_{min} - x_1) + y_1$, where the slope $= (y_2 - y_1)/(x_2 - x_1)$. 2. The location of the intersection of the edge with the right side of the	
	(i) $I_X = x_{min}$	
	 y₂) against a clip window with vertices at (x_{min}, y_{min}) and (x_{max}, y_{max}). 1. The location (I_X, I_Y) of the intersection of the edge with the left side of the mindow is: 	
	• Assume that we're clipping a polygon's edge with vertices at (x_1, y_1) and (x_2, y_2)	

Ans	Anti-	Proper result
	The equation for the Bezier Curve is given as;	4 M
	$P(u) = (u)^{3}P + 2u(1-u)^{2}P + 2u^{2}(1-u)P_{2} + u^{3}P_{4}$	
	P(a) = (1 - a) + 1 + 3 + a + (1 - a) + 2 + 3 + a + a + a + a + a + a + a + a + a	
	401 05 051	
	where,	
	P(u) is the point on the curve P, , P2, P3, P4	
	Let us take,	
	u=0, 4, 12, 9 4	
	$P(0) = P_1 = (1, 1)$	
	$\therefore P\left(\frac{1}{4}\right) = \left(1 - \frac{1}{4}\right)^{3} P_{1} + 3 \frac{1}{4} \left(1 - \frac{1}{4}\right)^{2} P_{2} + 3 \left(\frac{1}{4}\right)^{2} \left(1 - \frac{1}{4}\right) P_{3} + \left(\frac{1}{4}\right)^{3} P_{4}$	
	$=\frac{27}{64}(1,1)+\frac{27}{64}(2,3)+\frac{9}{64}(4,3)+\frac{1}{64}(3,1)$	
	$= \left[\frac{27}{64} \times 1 + \frac{27}{64} \times 2 + \frac{9}{64} \times 4 + \frac{1}{64} \times 3 \right],$	
	$\frac{27}{64} \times 1 + \frac{27}{64} \times 3 + \frac{9}{64} \times 3 + \frac{1}{64} \times 1$	
	$= \left[\frac{27}{64} + \frac{54}{64} + \frac{36}{64} + \frac{3}{64}, \frac{27}{64} + \frac{81}{64} + \frac{27}{64} + \frac{1}{64}\right]$	
	$= \left[\frac{120}{64}, \frac{136}{64} \right]$	
	= (1.875, 2.125)	

 $= P\left(\frac{1}{2}\right) = \left(1 - \frac{1}{2}\right)^{3}P_{1} + 3\frac{1}{2}\left(1 - \frac{1}{2}\right)^{2}P_{2} + 3\left(\frac{1}{2}\right)^{2}\left(1 - \frac{1}{2}\right)P_{3} + \left(\frac{1}{2}\right)^{3}P_{4}$ $= \frac{1}{8}(1,1) + \frac{3}{8}(2,3) + \frac{3}{8}(4,3) + \frac{1}{8}(3,1)$ $= \left[\frac{1}{8} \times 1 + \frac{3}{8} \times 2 + \frac{3}{8} \times 4 + \frac{1}{8} \times 3 \right],$ $\frac{1}{8} \times 1 + \frac{3}{8} \times 3 + \frac{3}{8} \times 3 + \frac{3}{8} \times 3 + \frac{1}{8} \times 1$ $= \left[\frac{1}{8} + \frac{6}{8} + \frac{12}{8} + \frac{3}{8} , \frac{1}{8} + \frac{9}{8} + \frac{9}{8} + \frac{1}{8} \right]$ $=\left[\frac{22}{8}, \frac{20}{8}\right]$ = (2.75,2.5) $P\left(\frac{3}{4}\right) = \left(1 - \frac{3}{4}\right)^{3} P_{1} + 3\frac{3}{4}\left(1 - \frac{3}{4}\right) P_{2} + 3\left(\frac{3}{4}\right)^{2}\left(1 - \frac{3}{4}\right) P_{3} + \left(\frac{3}{4}\right)^{3} P_{4}$ $=\frac{1}{64}P_1+\frac{9}{64}P_2+\frac{27}{64}P_3+\frac{27}{64}P_4$ $= \frac{1}{64}(1,1) + \frac{9}{64}(2,3) + \frac{27}{64}(4,3) + \frac{27}{64}(3,1)$ $= \left[\frac{1}{64} \times 1 + \frac{9}{64} \times 2 + \frac{27}{64} \times 4 + \frac{27}{64} \times 3 \right],$ $\frac{1}{64} \times 1 + \frac{9}{64} \times 3 + \frac{27}{64} \times 3 + \frac{27}{64} \times 1$ $= \left[\frac{1}{64} + \frac{18}{64} + \frac{108}{64} + \frac{81}{64} \right], \frac{1}{64} + \frac{27}{64} + \frac{81}{64} + \frac{27}{64} \right]$ $=\left[\frac{208}{64},\frac{136}{64}\right]=(3.25,2.125)$ $P(1) = P_3 = (3, 1)$

4		Attempt any THREE of the following	12 M
	a	Describe the vector scan display techniques with neat diagram.	4 M
	Ans	 A pen plotter operates in a similar way and is an example of a random-scan, hard-copy device. When operated as a random-scan display unit, a CRT has the electron beam directed only to the parts of the screen where a picture is to be drawn. Random scan monitors draw a picture one line at a time and for this reason 	Explanation 3 M Diagram 1 M
		 Random scan monitors draw a picture one line at a time and for this reason are also referred to as vector displays (or stroke-writing or calligraphic displays). Here the electron gun of a CRT illuminate's points and / or straight lines in any order. If we want a line connecting point A with point B on vector graphics display, we simply drive the beam reflection circuitry, which will cause beam to go directly from point A to point B. Refresh rate on a random-scan system depends on the number of lines to be displayed. 	
		 Picture definition stored as a set of line drawing commands in an area of memory called "<i>refresh display file</i>" or also called as <i>display list</i> or <i>display program</i> or <i>refresh buffer</i>. To display a given picture, the system cycles through the set of commands 	
		in the display file, drawing each component line by line in turn. After all line drawing commands have been processed, the system cycles back to the first line drawing command in the list. And repeats the procedure of scan, display and retrace.	
		 This displays to draw all the component lines of picture 30 to 60 frames/second Random scan system is designed for line drawing applications; hence cannot display realistic shaded scenes. 	
		 Vector displays produces smooth line drawings but raster produces jagged lines that are plotted points Random scan suitable for applications like engineering and scientific 	
		 Graphics patterns are displayed by directing the electron beam along the component lines of the picture 	
		 A scene is then drawn one line at a time by positioning the beam to fill in the line between specified end points. 	

b	Consider the line from (0,0) rasterize this line.	to (4,6). U	se the sim	ple DDA al	gorithm to	4 M
Ans	Evaluating steps 1 to 5 in the	DDA algor	rithm we ha	ave,		Proper result
	$X_1 = 0, Y_1 =$	= 0				4 M
	$X_2 = 4, Y_2 =$	= 6				
	$Length = \mathbf{Y}_2 - \mathbf{Y}_1 = 6$	5				
	$\Delta X = X_2 - X_1 / Leng$	= 4/6				
	$\Delta \mathbf{Y} = \mathbf{Y}_2 - \mathbf{Y}_1 / \text{Lense}$	gth = 6/6	5 = 1			
	Initial value for.					
	$X = 0 + 0.5 \times (4/6) = 0.5$					
	$X = 0 + 0.5 \times (4, 0) = 0.5$					
	$I = 0 + 0.3 \times (1) = 0.3$					
	Plot integer now:					
	1. Plot (0,0), $x=x+\Delta X=0.3$ 2.Plot (1,1), $x=x+\Delta X=1.16$ 3.Plot (1,2), $x=x+\Delta X=1.83$ 4.Plot (2,3), $x=x+\Delta X=2.5-5$ 5.Plot (3,4), $x=x+\Delta X=3.16$ 6.Plot (3,5), $x=x+\Delta X=3.83$	5+4/6=1.16 57+4/6=1.8 33+4/6=2.5 +4/6=3.167 57+4/6=3.8 33+4/6=4.5	y_{33}^{7} , $y_{=y+2}^{7}$ y_{33}^{7} , $y_{=y+2}^{7}$	$y=y+ \Delta Y=0$ $\Delta Y=1.5+1=2$ $y=y+ \Delta Y=2$ $\Delta Y=4.5+1=2$ $y=y+ \Delta Y=2$ $y=y+ \Delta Y=2$.5+1=1.5 2.5 2.5+1=3.5 3.5+1=4.5 5.5 5.5+1=6.5	
	Tabulating the results of each	iteration in	n the step 7	we get,		
	i	Plot	X	у]	
			0.5	0.5		
	1	(0,0)	1.167	1.5		
	2	(1,1)	1.833	2.5		
	3	(1,2)	2.5	3.5		
	4	(2,3)	3.167	4.5		
	5	(3,4)	3.833	5.5		
	0	(3,3)	4.5	0.3]	

	$f_{4} = \frac{1}{2} + \frac{1}{2$	
C	Consider a square A(1,0), B(0,0), C(0,1), D(1,1). Rotate the square by 45° anti-clockwise direction followed by reflection about X-axis.	4 M
Αι	$\begin{array}{c} \textbf{Given,} \\ \textbf{A}(1,0) \\ \textbf{B}(0,0) \\ c(0,1) \\ \textbf{D}(1,1) \\ \textbf{R} = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ \textbf{Hare, } \theta = 45^{\circ} \\ \textbf{R} = \begin{bmatrix} \cos45 & \sin45 & 0 \\ -\sin45 & \cos45 & 0 \\ -\sin45 & \cos45 & 0 \end{bmatrix} \\ \textbf{R} = \begin{bmatrix} 0.0545 & \sin45 & 0 \\ -\sin45 & \cos45 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ \textbf{Matrix Reflection about 2-0.xis} \\ Matrix Re$	Rotation + Reflection Matrix 1 M final Result= 3 M

	First we relate square by 45° anticlectwise direction and followed by reflection about wears. $R_{1} \propto_{ref} = \begin{bmatrix} 1/V_{2-} & VV_{2-} & 0 \\ -1/V_{2-} & 1/V_{2-} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ = \begin{bmatrix} 1 & 0 & 1 \\ -1/V_{2-} & -1/V_{2-} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \\ = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \\ = \begin{bmatrix} 1/V_{2-} & -1/V_{2-} & 0 \\ -1/V_{2-} & -1/V_{2-} & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ = \begin{bmatrix} 1/V_{2-} & -1/V_{2-} & 0 \\ -1/V_{2-} & -1/V_{2-} & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ = \begin{bmatrix} 1/V_{2-} & -1/V_{2-} & 0 \\ -1/V_{2-} & -1/V_{2-} & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ A^{2} = (1/V_{2-}, -1/V_{2-} & 1 \\ 0 & -2/V_{2-} & 1 \\ D^{2} = (-1/V_{2-}, -1/V_{2-}) \\ B^{2} = (0, 0) \\ B^{2} = (0, -2/V_{2-}) \end{bmatrix}$	
d	Use Cohen-Sutherland outcode algorithm to clip line PI (40, 15) P2 (75. 45) against a window A (50, 10), B (80, 10). C(80, 40) & D(50,40).	4 M
Ans	P1 (40, 15) - P2 (75, 45) Wxi = 50 Wy2 = 40 Wx2 = 80 Wy2 = 10	Proper result 4 M
	Point Endcode ANDing	
	P2 0000 (Partially visible)	
	$y_1 = m(x_L - x_1) + y_1 = \frac{6}{6}(50-40) + 15$ $m = \frac{45-15}{57-15}$	
	75-40	

	02.57	
	= 23.57	
	$x_1 = \frac{1}{m}(y_T - y) + x = \frac{7}{6}(40-50)+40 = 69.16$	
	$y_2 = m(x_R - x) + y = \frac{6}{7}(80-40) + 15 = 49.28$	
	$x_2 = \frac{1}{m}(y_B - y) + x = \frac{7}{6}(10-15)+40 = 34.16$	
	Hence:	
	$P_{1}(40, 15)$ (50, 40) (50, 10) (50, 10) (80, 10)	
	What is intermelation? Describe the Lagrangian Intermelation method	4 M
e Ans	Specify a spline curve by giving a set of coordinate positions, called control	4 M Definition-
Alls	points which indicates the general shape of the curve These control points	1 M
	are then fitted with piecewise continuous parametric polynomial functions in	Description
	one of two ways. When polynomial sections are fitted so that the curve passes	of
	through each control point, the resulting curve is said to interpolate the set of	Lagrangian
	control points. On the other hand, when the polynomials are fitted to the	method- 3
	general control-point path without necessarily passing through any control	Μ
	point, the resulting curve is said to approximate the set of control points	
	interpolation curves are commonly used to digitize drawings or to specify	
	animation paths. Approximation curves are primarily used as design tools to	
	structure object surfaces an approximation spline surface credited for a	
	surface	
	Interpolation using univariate spline	
	1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	
	0 -1 -1 -1 0 -1 -1 0 -1 -1 0 2 4 6 8 10 -1 -1 -1 -1 -1 -1 -1 -1	

		Lagrangian Interpolation Method:						
		Suppose we want a polynomial curve that will pass through n sample						
		 x1, y1, z1), (x2, y2, z2),, (xn, yn, zn), the function can be constructed as the sum of terms, one term for each sample point. a. Blending Function : 						
		$fx(u) = \sum_{i=1}^{n} x_i B_i(u)$						
		$fy(u) = \sum_{i=1}^{n} y_i B_i(u)$						
		$fz(u) = \sum_{i=1}^{n} z_i B_i(u)$						
		The function $B_i(u)$ is called as a blending function. For each value of u, the blending function determines which i th sample point affects the position of the curve.						
		The function $B_i(u)$ tells how hard the i th sample point is pulling it for some value of u, $B_i(u) = 1$ and for each $j \neq i$, $B_j(u) = 0$, then i th sample point has complete control of the curve. The curve will pass through i th sample point. Create a blending function for which the sample points (x_1, y_1, z_1) has complete control when $u = -1$, the third when $u = 1$ and so on. Therefore, we require a blending function						
		$B_1(u) = 1 \text{ at } u = -1$						
		An expression is 0 at $u = 0, 1, 2, 3,, n - 2$ An expression is 0 at $u (u - 1) (u - 2) [u - (n - 2)]$						
		At $u = -1$, it is $(-1)(-2)(-3)(1-n)$ So dividing by above constant, it gives 1 at $u = -1$						
		Therefore						
		$B_1(u) = \frac{u(u-1)(u-2)[(u-(n-2)]}{(u-1)(u-2)(u-(n-2)]}$						
		(-1)(-2)(-3)(1 - n) The i th blending function can be constructed in the same way to be 1 at u = i						
		-2 and 0 at other integers. (u+1)(u)(u-1)[u-(i-3)][u-(i-1)][u-(i-2)]						
		$\therefore B_1(u) = \frac{(i-1)(i-2)(i-3)\dots(1)(-1)\dots(i-n)}{(i-1)(i-2)(i-3)\dots(1)(-1)\dots(i-n)}$						
		The curve which is approximated using above equation is called Lagrange Interpolation.						
5		Attempt any TWO of the following :	12 M					
	a	Consider the line from (5,5) to (13,9). Use the Bresenham's algorithm to rasterize the line.	6 M					
	Ans	Bresenham Line Drawing Calculator By putting x1,x2 and y1,y2 Value it Show	Remark:					
		The Result In Step By Step order, and Result Brief Calculation Which Is Calculated by Brocenham Line Drawing Algorithm Brocenham Line Drawing	Preliminary					
		Algorithm display result in tables Starting Points is x1 y1 and Ending points is	$2 M \cdot Sten$					
		x2.v2.	wise plot 4					
		Preliminary Calculations:	M					
		x1 = 5 y1 = 5 & x2 = 13 y2 = 9						
		Calculation Result						

	dx = ab x2)	s(x1 -	8 =	abs(5 - 13	3)
	dy = ab y2)	s(y1 -	4 =	abs(5 - 9))
	p = 2 *	(dy - dx)	-8 =	= 2 * (4 - 8	3)
	ELSE		x = x2	$\mathbf{x}1 \mid \mathbf{y} = \mathbf{y}$	1 end =
			x = 5 y = 5		$5 \mid end = 13$
	<u>Stepwise</u>	Plot:			
	STEP	while(x < end)	x = x + 1	if(p < 0) { p = p + 2 * dy } else{ p = p + 2 * (dy - dx) }	OUTPUT
	1	6 < 13	6 = 5 + 1	IF 0 = -8 + 2 * 4	x = 6 y = 5
	2	7 < 13	7 = 6 + 1	ELSE -8 = 0 + 2 * (4 - 8)	x = 7 y = 6
	3	8 < 13	8 7 + 1	IF 0 = -8 + 2 * 4	x = 8 y = 6
	4	9 < 13	9 = 8 +	ELSE -8 = 0 + 2 * (4 -	$\begin{array}{l} x = 9 \mid y = \\ 7 \end{array}$

			1	8)			
	5	10 < 13	10 = 9 + 1	IF 0 = -8 + 2 * 4	x = 10 y = 7		
	6	11 < 13	11 = 10 + 1	ELSE -8 = 0 + 2 * (4 - 8)	x = 11 y = 8		
	7	12 < 13	12 = 11 + 1	IF 0 = -8 + 2 * 4	x = 12 y = 8		
	8	13 < 13	13 = 12 + 1	ELSE -8 = 0 + 2 * (4 - 8)	x = 13 y = 9		
b	Apply th D(0,1) as (i) Shear (ii) Shear	e shearing given belo Paramete r Paramete	trans ow. r valu er val	sformation ie of 0.5 i ue of 0.5	on to square relative to the relative to th	with A(0,0), B(1,0), C(1,1), e line yref = -1. he line xref = -1.	6 M
Ans	We can a	represent the	ne giv es as:	en squar	e ABCD, in	matrix form, using homogeneous	Each sub
	i) Here	$Sh_x = 0.5 a$	nd y _{re}	$\int_{f} = -1$	$\begin{array}{ccccc} A & 0 & 0 & 1 \\ B & 1 & 0 & 1 \\ C & 1 & 1 & 1 \\ D & 0 & 1 & 1 \end{array}$		M
			$\begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix}$	=	$\begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix} * \begin{bmatrix} SI \\ -Shx \end{bmatrix}$	1 0 0 hx 1 0 * yref 0 1]	
					$= \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}$	$ \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ 0.5 & 0 & 1 \end{bmatrix} $	


```
#include <stdio.h>
#include <stdlib.h>
#include <graphics.h>
#include <math.h>
void move(int j,int h,int &x,int &y)
{
    if(j==1)
     y-=h;
    else if(j==2)
     x + = h;
    else if(j==3)
     y + = h;
    else if(j==4)
     x-=h;
    lineto(x,y);
}
void hilbert(int r,int d,int l,int u,int i,int h,int &x,int &y)
{
    if(i>0)
     {
         i--:
         hilbert(d,r,u,l,i,h,x,y);
         move(r,h,x,y);
         hilbert(r,d,l,u,i,h,x,y);
         move(d,h,x,y);
         hilbert(r,d,l,u,i,h,x,y);
         move(l,h,x,y);
         hilbert(u,l,d,r,i,h,x,y);
     }
}
int main()
{
    int n,x1,y1;
    int x0=50,y0=150,x,y,h=10,r=2,d=3,l=4,u=1;
     printf)"\nGive the value of n: ");
    scanf("%d",&n);
     x=x0;y=y0;
     int gm,gd=DETECT;
     initgraph(&gd,&gm,NULL);
     moveto(x,y);
     hilbert(r,d,l,u,n,h,x,y);
```


		delay(10000);	
		closegraph();	
		return 0;	
		}	
6		Attempt any TWO of the following	12 M
	a	Write a Program in 'C' for DDA Circle drawing algorithm	6 M
	Ans	#include <stdio.h></stdio.h>	Correct
		#include <conio.h></conio.h>	Program 6
		#include <graphics.h></graphics.h>	marks
		#include <math.h></math.h>	
		void main()	
		int gdriver=DETECT,gmode,errorcode,tmp,i=1,rds;	
		float st_x,st_y,x1,x2,y1,y2,ep;	
		initgraph(&gdriver,&gmode,"C:\\TC\\BGI");	
		printf("Enter Radius:");	
		scanf("%d",&rds);	
		while(rds>pow(2,i))	
		i++;	
		ep=1/pow(2,i);	
		x1=rds; y1=0;	
		st_x=rds; st_y=0;	
		do	
		{ x2=x1+(y1*ep);	
		y2=y1-(x2*ep);	
		putpixel(x2+200,y2+200,10);	
		x1=x2;	
		y1=y2;	
		$\frac{1}{10000000000000000000000000000000000$	
		getch();	
	b	Perform a 45° rotation of triangle A(0,0), B(1,1), C(5,2)	6 M
		(i) About the origin (ii) About P(-1,-1)	
	Ans	About the Origin: -	Each Sub
			problem – 3
			М

Ans	Given:	Remark:
	$(X_{min}, Y_{min}) = (10, 10) \text{ and } (X_{max}, Y_{max}) = (50, 50)$ P1 (30, 60) and P2 = (60, 25)	Calculation of each side 1 M:
	Solution:	Decision of
	Set $Umin = 0$ and $Umax = 1$	displaying line
	ULeft= $q1 / p1$ = X1 - Xmin / - Δ X	coordinates with
	= 30 - 10 / - (60 - 30)	2 M
	= 20 / - 30	
	= -0.67	
	URight = q2 / p2 = Xmax - X1/ Δ X	
	= 50 - 30 / (60 - 30)	
	= 20 / 30	
	= 0.67	
	UBottom= $q3 / p3$ = Y1 - Ymin / - Δ Y	
	= 60 - 10 / - (25 - 60)	
	= 50 / 35	
	= 1.43	
	UTop=q4 / p4 = Ymax - Y1 / Δ Y	
	= 50 - 60 / (25 - 60)	
	= -10 / - 35	
	= 0.29	
	Since ULeft= -0.57 which is less than Umin. Therefore we ignore it. Similarly UBottom= 1.43 which is greater than Umax. So we ignore it. URight=Umin = 0.67 (Entering) UTop=Umax = 0.29 (Exiting) We have UTop= 0.29 and URight= 0.67 $Q - P = (\Delta X, \Delta Y) = (30, -35)$	
	Since Umin>Umax, there is no line segment to draw.	

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT / CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

WINTER – 19 EXAMINATION

Subject Name: Computer Graphics

Model Answer

Subject Code: 22318

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No.	Q.		Scheme
	N.		
1		Attempt any FIVE of the following :	10 M
	a	Give two applications of computer graphics.	2 M
	Ans		Any two
			applications : 2
		Computer Entertainment (nim, video games, advertising etc.)	Μ
		Medical Applications	
		CAD/CADD (architecture, mechanical design, electrical design)	
		Cartography	
		Computer Art	
		Desktop Publishing Applications	
		Computer	
		Simulation	
		(flight,driving) and virtual reality	
		Presentation	
		Graphical User / Graphics Interface (GUI)	
		Internet Engineering Graphics	
		DTP (Desktop Publishing)	
		Used for common paper and book publishing are sometimes used to	
		create graphics for point of sale displays, presentations, infographics,	
		brochures, business cards, promotional items, trade show exhibits,	
		retail package designs and outdoor signs.	
		Graphical User Interface (GUI)	

The use of pictures, images, icons, pop-up menus, graphical objects helps in creating a user friendly environment where working is easy and pleasant, using computer graphics we can create such an atmosphere where everything can be automated and anyone can get
the desired action performed in an easy fashion.
Computer-Aided Design
Designing of buildings, automobile, aircraft is done with the help of computer aided drawing, this helps in providing minute details to the drawing and producing more accurate and sharp drawings with better specifications.
Computer-Aided Learning (Cal)
Computer Aided Learning (CAL) is the application of computers as an integral part of the learning system for learning and teaching process.
Animations
Used for creating motion pictures, music video, television shows, cartoon animation films.
Computer Art
Using computer graphics we can create fine and commercial art which include animation packages, paint packages.
Entertainment
Computer graphics finds a major part of its utility in the movie industry and game industry. Used for creating motion pictures, music video, television shows, cartoon animation films.
Education and training
Computer generated models are extremely useful for teaching huge number of concepts and fundamentals in an easy to understand and learn manner.
• Image processing
Various kinds of photographs or images require editing in order to be used in different places.
Medical Applications
The use of computer graphics for medical diagnosis has provided an extraordinary ability to visualize measure and evaluate structures in a non-intrusive manner.
Presentation and Business Graphics
For the preparation of reports or summarizing the financial, statistical,
managerial reports, moreover creation of bar graphs, pie charts, time
chart, can be done using the tools present in computer graphics.
Simulation and Virtual Reality
A simulation can also take the form of a computer-graphics image that represents dynamic processes in an animated sequence. Virtual
reality applications are applications that make use of virtual

		reality (VR). VR is an immersive sensory experience that digitally	
		simulates a remote environment.	
	b	List / name two line drawing algorithms.	2 M
	Ans	 Digital Differential Analyzer (DDA) Algorithm 	Any two
		Bresenham's Line Drawing Algorithm	names: 2 M
	c	Explain the need of homogeneous co-ordinates matrix.	2 M
	Ans	Homogeneous coordinates are used extensively in computer vision and	Explanation: 2
		graphics because they allow common operations such as translation, rotation,	Μ
		scaling and perspective projection to be implemented as matrix operations.	
	d	Define polygon clipping.	2 M
	Ans	A set of connected lines are considered as polygon; polygons are clipped	Any suitable
		based on the window and the portion which is inside the window is kept as it	definition: 2 M
		is and the outside portions are clipped.	
		UK	
		Polygon chipping is removal of part of an object outside a polygon.	2 М
	e Ang	Draw Cubic Bezier Curve.	<u> </u>
	Ans		Any similar
			type of curve: 2
			IVI
		OR	
	f	Define Bitmap Graphics.	2 M
	Ans	• A bitmap is an image or shape of any kind-a picture, a text character,	Any suitable
		a photo-that's composed of a collection of tiny individual dots. A wild	definition: 2 M
		landscape on your screen is a bitmapped graphic, or simply a bitmap.	
		• It is a pixel based image, not scalable and size of image is high.	
	g	List various character generation methods.	2 M
	Ans	Stroke Method	Any two
		Bitmap Method	names: 2 M
		Starburst Method	
2		Attempt any THREE of the following :	12 M
	a	Write short note on Augmented Reality.	4 M
	Ans	• Augmented reality (AR) is made up of the word "augment" which	Explanation:
		means to make something great by adding something to it.	4M
		• Augmented Reality is a type of virtual reality that aims to duplicate	
		the world's environment in a computer.	
1		1	
		• Augmented reality is a method by which we can alter our real world	

	• This is done by superimposing a digital image on the person's current	
	view thus it enhances the experience of reality.	
	• Virtual reality makes a virtual environment and puts the user in it	
	whereas Augmented reality just adds the virtual components into the	
	user's real-world view.	
	• For Augmented reality you only need a modern smartphone then you	
	can easily download an AR app like Google's "just a line" and try	
	this technology.	
	• One of the most popular ways AR has infiltrated everyday life is	
	through mobile games. In 2016, the AR game "Pokémon Go" became	
	a sensation worldwide, with over 100 million estimated users at its	
	peak, according to CNET.	
	• The goal of Augmented Reality is to create a system in which the user	
	cannot tell the difference between the real world and the virtual	
	augmentation of it. Today Augmented Reality is used in	
	entertainment, military training, engineering design, robotics,	
	manufacturing and other industries.	
b	Explain scan line algorithm of polygon clipping.	4 M
Ans	• For each scan line crossing a polygon, the area-fill algorithm locates	Algorithm: 4 M
	the intersection points of the scan line with the polygon edges.	0
	• These intersection points are then sorted from left to right, and the	
	corresponding frame-buffer positions between each intersection pair	
	are set to the specified fill color.	
	• Scan line algorithm works by intersecting scan line with polygon	
	edges and fills the polygon between pairs of intersections. The	
	following steps depict how this algorithm works	
	Step 1 : Find out the Y_{min} and Y_{max} from the given polygon.	
	Y _{max}	
	Scan line 00000	
	p_0 p_1 p_2 p_3	
	Y _{min}	
	• Step 2 : ScanLine intersects with each edge of the polygon from	
	Ymin to Ymax. Name each intersection point of the polygon. As per	
	the Fig. 2.21 shown, they are named as p0, p1, p2, p3.	
	• Step 3 : Sort the intersection point in the increasing order of X	
	coordinate	
	i.e. (p0, p1), (p1, p2), and (p2, p3).	

	1		
		• Step 4 : Fill all those pair of coordinates that are inside polygons and	
		ignore the alternate pairs.	
	c	Write 2D and 3D scaling matrix.	4 M
	Ans	2D Scaling	2D matrix: 2
		• Scaling means to change the size of object. This change can either be	М,
		positive or negative.	3D matrix: 2 M
		• To change the size of an object, scaling transformation is used. In the	
		scaling process, you either expand or compress the dimensions of the	
		object.	
		• Scaling can be achieved by multiplying the original co-ordinates of	
		the object with the scaling factor to get the desired result.	
		• Let us assume that the original co-ordinates are (X, Y), the scaling	
		factors are (S_X, S_Y) , and the produced co-ordinates are (X', Y') . This	
		can be mathematically represented as shown below:	
		\circ X' = X \cdot S _X and Y' = Y \cdot S _Y	
		• The scaling factor S_X , S_Y scales the object in X and Y direction	
		respectively. The above equations can also be represented in matrix	
		form as below:	
		$\begin{bmatrix} \mathbf{X}' \end{bmatrix} \begin{bmatrix} \mathbf{X} \end{bmatrix} \begin{bmatrix} \mathbf{X} \end{bmatrix} \begin{bmatrix} \mathbf{S}_{\mathbf{x}} \end{bmatrix} 0 \end{bmatrix}$	
		OR	
		D'	
		$=\mathbf{P}\cdot\mathbf{S}$	
		• Where, S is the scaling matrix.	
		• The scaling process is shown in the Fig	
		f f	
		20-	
		15+ 15+	
		10 ⁺	
		(a) Before Scaling (b) After Scaling	
		3D Scaling Matrix	
L			<u> </u>

	$S = egin{bmatrix} S_x & 0 & 0 & 0 \ 0 & S_y & 0 & 0 \ 0 & 0 & S_z & 0 \end{bmatrix}$	
	It specifies three co-ordinates with their own scaling factors. If scale factors,	
	Sx = Sy = Sz = S > 1 then the scaling is called as magnification.	
	Sx = Sy = Sz = S < 1 then the scaling is called as reduction.	
	Therefore, point after scaling with respect to origin can be calculated as.	
	P=P.S	
d	Explain midpoint subdivision line clipping algorithm.	4 M
Ans	Step 1: Scan two end points for the line $P1(x1, y1)$ and $P2(x2, y2)$.	Algorithm: 4 M
	Step 2: Scan corners for the window as (Wx1, Wy1) and (Wx2, Wy2).	0
	Step 3: Assign the region codes for endpoints P1 and P2 by initializing code	
	with	
	0000.	
	Bit 1 - if $(x < Wx1)$	
	Bit 2 - if $(x > Wx2)$	
	Bit 3 - if $(y < Wy1)$	
	Bit 4 - if $(y > Wy2)$	
	Step 4: Check for visibility of line P1, P2.	
	• If region codes for both end points are zero then the line is visible, draw it and jump to step 6.	
	• If region codes for end points are not zero and the logical Anding	
	operation of them is also not zero then the line is invisible, reject it	
	and jump to step 6.	
	• If region codes for end points does not satisfies the condition in 4 (i)	
	and 4 (ii) then line is partly visible.	
	Step5: Find midpoint of line and divide it into two equal line segments and	
	repeat	
	steps 3 through 5 for both subdivided line segments until you get completely	
	visible and completely invisible line segments.	
	Step 6: Exit.	
e	Explain interpolation techniques in curve generation.	4 M
Ans	Specify a spline curve by giving a set of coordinate positions, called control	Diagram: 2 M,
	points, which indicates the general shape of the curve These, control points	Explanation: 2
	are then fitted with piecewise continuous parametric polynomial functions in	Μ
	one of two ways. When polynomial sections are fitted so that the curve passes	
	through each control point, the resulting curve is said to interpolate the set of	
	control points. On the other hand, when the polynomials are fitted to the	
	general control -point path without necessarily passing through any control	
	point, the resulting curve is said to approximate the set of control points	
	interpolation curves are commonly used to digitize drawings or to specify	
	animation paths. Approximation curves are primarily used as design tools to	

		structure object surfaces an approximation spline sur face credited for a design application. Straight lines connect the control -point positions above	
		the surface.	
		Interpolation using univariate spline	
		1 = 1 $0 = 1$ $1 =$	
		0 2 4 0 0 10	
3		Attempt any THREE of the following :	12 M
	a	Explain with diagram the techniques of Raster Scan Display.	4 M
	Ans	• The most common type of graphics monitor employing a CRT is the	Explanation: 2
		Raster-scan displays, based on television technology	М,
		• IPG images are raster based. Light occurs when an electron beam	Diagram: 2 M
		stimulates a phosphor.	
		• In Raster scan, the electron beam from electron gun is swept	
		horizontally across the phosphor one row at time from top to bottom.	
		• The electron beam sweeps back and forth from left to right across the screen. The beam is on, while it moves from left to right. The beam is off, when it moves back from right to left. This phenomenon is called the horizontal retrace.	
		• As soon as the beam reaches the bottom of the screen, it is turned off and is rapidly retraced back to the top to start again. This is called the	
		vertical retrace.	
		• Raster scan displays maintain the steady image on the screen by	
		repeating scanning of the same image. This process is known as refreshing of screen.	

	 Picture definition is stored in a memory area called the refresh buffer or frame buffer. This memory area holds the set of intensity values for all the screen points. The stored intensity values are then retrieved from frame buffer and painted on the screenone row at a time. Each screen point is referred as Pixel orpel. Each pixel on the screen can be specified by it row and column number. Intensity range for pixel position depends on capability of the raster system. In black and white system, the point on screen is either on or off. Only one bit is needed to control the intensity of the screen. In case of color systems, 2 bits are requiredOne to represent ON (1), another one is OFF (0). Refreshing on raster scan is carried out at the rate of 60 to 80 frames per seconds. The video or display controller has direct access to memory locations in the frame buffer. It is responsible for retrieving data from the frame buffer and converts 0's and 1's in one line into its corresponding video signals and this is called a scan line. If the intensity is one (1) then controller sends a signal to display a dot in the corresponding position on the screen. If the intensity is zero (0) then no dot is displayed. 	
h	Write presedure to fill polygon with flood fill	4 M
 U Ang	flood fill(u wold color row color)	4 1/1
		('orrect
Alls	1000_1111(x,y,010_c010r,new_c010r)	Correct
AIIS	{	Correct procedure: 4 M
Alls	<pre>inood_ini(x,y,oid_color,new_color) { if(getpixel(x,y) = old_color)</pre>	Correct procedure: 4 M
Alls	<pre>inood_ini(x,y,oid_color,new_color) { if(getpixel(x,y) = old_color) { </pre>	Correct procedure: 4 M
Alls	<pre>inood_ini(x,y,oid_color,new_color) { if(getpixel(x,y) = old_color) { putpixel(x,y,new_color); }</pre>	Correct procedure: 4 M
Alls	<pre>inood_ini(x,y,oid_color,new_color) { if(getpixel(x,y) = old_color) { putpixel(x,y,new_color); flood_fill(x+1,y,old_color, new_color); </pre>	Correct procedure: 4 M
Alls	<pre>inood_ini(x,y,oid_color,new_color) { if(getpixel(x,y) = old_color) { putpixel(x,y,new_color); flood_fill(x+1,y,old_color, new_color); flood_fill(x-1,y,old_color, new_color);</pre>	Correct procedure: 4 M
Alls	<pre>inood_ini(x,y,oid_color,new_color) { if(getpixel(x,y) = old_color) { putpixel(x,y,new_color); flood_fill(x+1,y,old_color, new_color); flood_fill(x-1,y,old_color, new_color); flood_fill(x,y+1,old_color, new_color); } }</pre>	Correct procedure: 4 M
Alls	<pre>hood_fill(x,y,old_color,new_color) { if(getpixel(x,y) = old_color) { putpixel(x,y,new_color); flood_fill(x+1,y,old_color, new_color); flood_fill(x-1,y,old_color, new_color); flood_fill(x,y+1,old_color, new_color); flood_fill(x,y-1,old_color, new_color); flo</pre>	Correct procedure: 4 M
Alls	<pre>inood_init(x,y,old_color,new_color) { if(getpixel(x,y) = old_color) { putpixel(x,y,new_color); flood_fill(x+1,y,old_color, new_color); flood_fill(x,y+1,old_color, new_color); flood_fill(x,y-1,old_color, new_color); flood_fill(x+1,y+1,old_color, new_color); flood_fill(x+1,y+1,old_color</pre>	Correct procedure: 4 M
Alls	<pre>inood_init(x,y,oid_color,new_color) { if(getpixel(x,y) = old_color) { putpixel(x,y,new_color); flood_fill(x+1,y,old_color, new_color); flood_fill(x,y+1,old_color, new_color); flood_fill(x,y+1,old_color, new_color); flood_fill(x+1,y+1,old_color, new_color); flood_fill(x+1,y+1,old_color, new_color); flood_fill(x-1,y-1,old_color, new_color); flood_fill(x-1,y-1,old_color</pre>	Correct procedure: 4 M
Alls	<pre>inood_init(x,y,oid_color,new_color) { if(getpixel(x,y) = old_color) { putpixel(x,y,new_color); flood_fill(x+1,y,old_color, new_color); flood_fill(x,y+1,old_color, new_color); flood_fill(x,y+1,old_color, new_color); flood_fill(x+1,y+1,old_color, new_color); flood_fill(x+1,y+1,old_color, new_color); flood_fill(x+1,y-1,old_color, new_color); flood_fill(x+1,y-1,old_color</pre>	Correct procedure: 4 M

	}	
	}	
c	Explain 2D transformations with its types.	4 M
Ans	A transformation is a function that maps every position (x, y) into a new position (x', y') . Instead of applying the transformation function to every point in every line that makes up the object, we simply apply the function to the object vertices and then draw new lines between the resulting new endpoints.	2D transformation: 1 M, Types: 1 M each
	Basic Transformations:	
	1)Translation 2)Scaling 3)Rotation	
	 1)Translation: A translation is applied to an object by repositioning it along a straight-line path from one coordinate location to another. Translation refers to the shifting (moving) of a point to some other place, whose distance with regard to the present point is known. Translation can be defined as "the process of repositioning an object along a straight line path from one co-ordinate location to new co-ordinate location." A translation moves an object to a different position on the screen. You can translate a point in 2D by adding translation coordinate (tx, ty) to the original coordinate (X, Y) to get the new coordinate (X', Y') y y	

From the	above Fig. you can w	rite that:		
X' = X	+ tx			
Y' = Y	+ ty			
The pair equations	(tx, ty) is called the can also be represent	translation vector or ted using the column	shift vector. 7 vectors.	The above
_	_	-		
P = [X] [Y] $= [X] [Y]$	Y] p' Y] T = [tx] [ty]			
We can w	rite it as,			
$\mathbf{P'} = \mathbf{P} + \mathbf{T}$	Г			
Rotation				
•	Rotation as the nan	ne suggests is to rota	te a point abou	ut an axis.
	The axis can be a specified line also.	ny of the co-ordina	tes or simply	any other
•	In rotation, we rotat its origin. From the P(X, Y) is located with distance r from	te the object at partic e following figure, w at angle φ from the n the origin.	tular angle θ (the can see that horizontal X θ	heta) from t the point coordinate
•	Let us, suppose you it to a new location,	want to rotate it at the you will get a new p	he angle θ. Aft point P' (X', Y')	er rotating
Using star represente	ndard trigonometric the das:	he original coordinat	e of point P(X,	Y) can be
$X = r \cos \theta$	ф	(1)		
Y = r sin	ф	(2)		
Same way $x' = r \cos x$	y we can represent the $(\phi + \theta) = r \cos \phi \cos \theta$	e point P' (X', Y') as: $\theta - r \sin \phi \sin \theta$	(?-	3)
$y' = r \sin \theta$	$(\phi + \theta) = r \cos \phi \sin \theta$	$\theta + r \sin \phi \cos \theta$	(4	4)
Substituti $x' = x \cos y' = x \sin \theta$	ng equation (1) and (2 $\theta - y \sin \theta$ $\theta + y \cos \theta$ ting the above equation	2) in (3) and (4) respo	ectively, we wi	ill get
represent	mg the above equall	m m maant 101m,		

 $\begin{bmatrix} X' Y' \end{bmatrix} = \begin{bmatrix} X' Y' \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ OR $P' = P \cdot R$ Where, R is the rotation matrix $\mathbf{R} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$ The rotation angle can be positive and negative. Scaling: Scaling means to change the size of object. This change can either be positive or negative. To change the size of an object, scaling transformation is used. In the scaling process, you either expand or compress the dimensions of the object. Scaling can be achieved by multiplying the original co-ordinates of the object with the scaling factor to get the desired result. Let us assume that the original co-ordinates are (X, Y), the scaling factors are (SX, SY), and the produced co-ordinates are (X', Y'). This can be mathematically represented as shown below: X' = X .SX and Y' = Y .SYThe scaling factor SX, SY scales the object in X and Y direction respectively. The above equations can also be represented in matrix form as below: $\begin{bmatrix} X' \\ Y' \end{bmatrix} = \begin{bmatrix} X \\ Y \end{bmatrix} \begin{bmatrix} S_x & 0 \\ 0 & S_y \end{bmatrix}$ OR $P' = P \cdot S$ Where, S is the scaling matrix.

		The following figure shows text clipping –	
		RING 3	
		(a) Before Clipping (b) After Clipping	
		This clipping method is based on characters rather than the entire string. In this method if the string is entirely inside the clipping window, then we keep it. If it is partially outside the window, then you reject only the portion of string being outside. If the character is on the boundary of the clipping window, then we discard only that portion of character that is outside of the clipping window.	
1		Attempt on TUDEE of the following a	12 M
4	ล	Explain inside and outside test for polygon	<u>12 M</u> <u>4 M</u>
	Ans	 This method is also known as counting number method. While filling an object, we often need to identify whether particular point is inside the object or outside it. There are two methods by which we can identify whether particular point is inside an object or outside namely, Odd-Even Rule, and Non-zero winding number rule. 1. Odd-Even Rule: In this technique, we count the edge crossing along the line from any point (x, y) to infinity. If the number of interactions is odd then the point (x, y) is an interior point. If the number of interactions is even then point (x, y) is an exterior point. 	Explanation: 4 M

	Image: https://www.image: https://www.image: https://www.image.com/image: https://www.image.com/ima	
	Fig D: Non-zero winding Number Kule:	
	In another alternative method, give directions to all the edges of the polygon. Draw a scan line from the point to be test towards the left most of X direction. Given the value 1 to all the edges which are going to upward direction and all other – 1 as direction values. Check the edge direction values from which the scan line is passing and sum up them. If the total sum of this direction value is non-zero, then this point to be tested is an interior point, otherwise it is an exterior point.	
	In the above figure, we sum up the direction values from which the scan line is passing then the total is $1 - 1 + 1 = 1$; which is non-zero. So the point is	
	said to be an interior point.	
b	Explain composite transformation over arbitrary point.	4 M
Ans	 To do rotation of an object about any selected arbitrary point P1(x1,y1), following sequence of operations shall be performed. 1. Translate: Translate an object so that arbitrary point P1 is moved to coordinate 	Explanation: 2 M, Matrix: 1 M, Diagram: 1M
	origin.	0
	2. Rotate:	
	3. Translate:	
	Translate object so that arbitrary point P1 is moved back to the its	
	original position. Rotate about point $P1(y1 y1)$	
	Notate about point $P1(x1,y1)$. 1) Translate P1 to origin	
	2) Rotate	
	3) Translate back to P1.	
	Equation for this composite transformation matrix form is as follows:	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

	d	Write		4 M						
	Ans	1. Rea		Correct						
		2. Rea	â	algorithm: 4 M						
		3. Rea								
		4. Cal	4. Calculate $d\Theta$							
		5 Init								
		6 wh^3								
		do								
		{								
		Plot(
		x=x-(y-y0) *d0							
		y=y-(2	x-x0) *d⊖							
		Angle	$=$ Angle + d \in)						
		}								
		/. sto	0							
5		Atten	nnt any TWC) of the follow	ing ·			12 M		
-	а	Use Bresenham's line drawing algorithm to rasterize line from (6.5) to					to	6 M		
		(15.10).						0 1.1		
	Ans						(Calculations of		
		x1 = 6 y1 = 5 & x2 = 15 y2 = 10					dx, dy and p: 2			
		Calculation		Result				M ;		
				0 = abc(6 - 15)			(Calculations of		
		dx = abs(x1 - x2)		9 = abs(6 - 15)				steps: 4 M		
		dy = abs(y1 - y2)		5 = abs(5 - 10)						
		p = 2 * (dy - dx)		-8 = 2 * (5 - 9)						
		ELSE		x = x1 y = y1 end = x2						
				x = 6 y = 5 end = 15						
		S	while(x <	x = x + 1	$if(p < 0) \{ p = p +$	- OUTPUT				
		Т	end)		$2 * dy = \log n - \frac{1}{2}$	_				
		E	$p = a_{j}$		$\frac{2}{2} = \frac{1}{2} $	-				
		Р		p + 2 · (dy - d		}				
		1	7 < 15	7 = 6 + 1 IF $2 = -8 + 2 * 5$		x = 7 y = 5				
		2	8 < 15	8 = 7 + 1	ELSE -6 = 2 + 2 * (5 - 9)	$x = 8 \mid y = 6$				

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

	3	9 < 15	9 = 8 + 1	IF $4 = -6 + 2 * 5$	x = 9 y = 6	
	4	10 < 15	10 = 9 + 1	ELSE -4 = 4 + 2 * (5 - 9)	x = 10 y = 7	
	5	11 < 15	11 = 10 + 1	IF $6 = -4 + 2 * 5$	x = 11 y = 7	
	6	12 < 15	12 = 11 + 1	ELSE -2 = 6 + 2 * (5 - 9)	x = 12 y = 8	
	7	13 < 15	13 = 12 + 1	IF 8 = -2 + 2 * 5	x = 13 y = 8	
	8	14 < 15	14 = 13 + 1	ELSE 0 = 8 + 2 * (5 - 9)	x = 14 y = 9	
	9	15 < 15	15 = 14 + 1	ELSE -8 = 0 + 2 * (5 - 9)	x = 15 y = 10	
				OR		

Δ.	$(6,5) - \frac{2}{2} = 15$ $x = 1 + 22$ $y = 1 + 22 - 3$ $y = 1 + 22 - 3$ $x = - 2 + 3$ $y = - 2 + 3$ $y = - 2 + 3$ $= - 2 + 3$	to $(15, 10)$ $Y_1 = 5$ $Y_2 = 10$ $-\infty_1 = 15-$ $Y_1 = 10-5$ = 6 1 = 15 $* \Delta Y - \Delta X$ * 5 - 9 -9	6] = 09] = 05			
	i	plot	x 6	71 In	e 1	
1977 5 19	1	(6,5)	٦	6	-8	
	2	(7,6)	8	- 6	2-6	
	3	(8,6)	9		4	
	4	(9,7)	10	8	-4	
	5	(10,7)	11	Q	.6	
	6	(11,8)	212	0	-2	
	٦	(12,8)	13	9	.00	
	8	(13,9)	14	10	0	
	٩	(14,9)	15			
	10	(15,10)				

#define N 32 #define K 3 #define MAX N * K typedefstruct{int x; int y; } point; void rot(int n, point *p, int rx, int ry){ int t; if(!ry){ if(rx == 1){ p -> x = n - 1 - p -> x;p -> y = n - 1 - p -> y;} t = p - x; $p \rightarrow x = p \rightarrow y;$ $p \rightarrow y = t;$ } } void d2pt(int n, int d, point *p){ int s = 1, t = d, rx, ry; p -> x = 0;p -> y = 0;while (s < n)rx = 1&(t / 2); $ry = 1\&(t ^ rx);$ rot(s, p, rx, ry); p->x += s * rx; p -> y += s * ry;t /= 4; s *= 2; } } int main(){ int d, x, y, cx, cy, px, py; char pts[MAX][MAX]; point curr, prev; for(x = 0; x < MAX; ++x)

		for(y = 0; y < MAX; ++y) pts[x][y] = '';	
		prev.x = prev.y = 0;	
		pts[0][0] = '.';	
		$for(d = 1; d < N * N; ++d){$	
		d2pt(N, d, &curr);	
		cx = curr.x * K;	
		cy = curr.y * K;	
		px = prev.x * K;	
		py = prev.y * K;	
		pts[cx][cy] = '.';	
		$if(cx == px)$ {	
		if(py < cy)	
		for(y = py + 1; y < cy; ++y) pts[cx][y] = ' ';	
		else	
		for(y = cy + 1; y < py; ++y) pts[cx][y] = ' ';	
		}	
		else{	
		if(px < cx)	
		$for(x = px + 1; x < cx; ++x) pts[x][cy] = '_';$	
		else	
		$for(x = cx + 1; x < px; ++x) pts[x][cy] = '_';$	
		}	
		prev = curr;	
		}	
		for(x = 0; x < MAX; ++x)	
		for(y = 0; y < MAX; ++y)printf("%c", pts[y][x]);	
		<pre>printf("\n");</pre>	
		}	
		return0;	
		}	
6		Attempt any TWO of the following ·	12 M
U	a	Explain character generation methods:	6 M
		i. Stroke	
		ii. Starburst	
		iii. Bitmap	
	Ans	1) STROKE METHOD	Each Method of
		• Stroke method is based on natural method of text written by human	character
		being. In this method graph is drawing in the form of line by line.	generation: 2 M

0	Explain Cymichlak ling aligning algorithm	6 M
C		
Ans	Cyrus Beck Line Clipping algorithm:	Description of
	Cyrus Beck Line Chipping algorithm is used to chip 2D/3D lines against	algorithm: 6 M
	• Currue Deale Line aligning algorithm is actually a noremetric line aligning	**Cyrus Beck
	• Cylus Beck Line chipping algorithm is actually, a parametric line-chipping	instead of
	• The term parametric means that we require finding the value of the	Cyrushlek
	parameter t in the parametric representation of the line segment for the point	Cyrusbick
	at that the segment intersects the clipping edge	
	• Consider line segment P_1P_2 . The parametric equation of line segment P_1P_2	
	is.	
	$P(t) = P_1 + t(P_2 - P_1) \dots (1)$	
	Where, t value defines a point on the line going through P1 and P2.	
	$0 \le t \le 1$ defines line segment between P1 and P2.	
	If $t = 0$ then $P(0) = P_1$.	
	If $t = 1$ then $P(1) = P_2$.	
	• Consider a convex clipping region R, f is a boundary point of the convex	
	region R and n is an inner normal for one of its boundaries as shown in Fig	
	y 🛔	
	f Boundary point	
	R-convex region	
	×	
	Convex region boundary point and inner normal	
	convertegion, soundary point and miler normal	
	• Then we can distinguish in which region a point lie by looking at the value	
	of the dot product	
	n.[P(t) - f], as shown in Fig.	
	• If dot product is negative i.e.,	
	n.[P(t) - f] < 0 (2)	
	then the vector $P(t) - f$] is pointed away from the interior of R.	
	• If dot product is zero i.e.,	
	n.[P(t) - f] = 0 (3)	
	then the vector $P(t) - f$] is pointed parallel to the plane containing f and	
	perpendicular to the normal.	
	• If dot product is positive i.e.,	
	n[P(t) - t] > 0 (4)	

$t = -(n_i.Wi) / (n_i.D) (9)$	
where, $D \neq 0$ and $i = 1, 2, 3 \dots$	
• The equation (9) is used to obtain the value of t for the intersection of the	
line with each edge of the clipping window. We must select the proper	
value for t using following tips :	
1. If t is outside the range $0 \le t \le 1$, then it can be ignored.	
2. We know that, the line can intersect the convex window in at most two	
points, i.e. at two values	
of t. With equation (9), there can be several values of t in the range of $0 \le t$	
<= 1. We have to choose the largest lower limit and the smallest upper	
limit.	
3. If $(n_i \cdot D_i) > 0$ then equation (9) gives lower limit value for t and if $(n_i \cdot D_i)$	
< 0 then equation (9)	
gives upper limit value for t.	
Algorithm Cyrus Beck Line Clinning Algorithm.	
Step 1 • Read end points of line P ₁ and P ₂	
Step 2 : Read vertex coordinates of clipping window	
Step 3 : Calculate $D = P_2 - P_1$.	
Step 4 : Assign boundary point b with particular edge.	
Step 5 : Find inner normal vector for corresponding edge.	
Step 6 : Calculate D.n and $W = P_1 - b$	
Step 7 : If $D.n > 0$	
$t_{\rm L} = -(W.n)/(D.n)$	
else	
$t_{\rm U} = -({\rm W.n})/({\rm D.n})$	
end if	
Step 8 : Repeat steps 4 through 7 for each edge of clipping window.	
Step 9: Find maximum lower limit and minimum upper limit.	
Step 10: If maximum lower limit and minimum upper limit do not satisfy	
condition $0 \le t \le 1$ then	
ignore line.	
Step 11: Calculate intersection points by substituting values of maximum	
lower limit and minimum upper limit in parametric equation of line P_1P_2 .	
Step 12 : Draw line segment $P(t_L)$ to $P(t_U)$.	
Step 13 : Stop.	